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Abstract 

The purpose of this paper is to study the appearance of time asymmetry in dynamical 
systems. The systems are harmonic oscillators and a certain mixing flow on the torus. The 
asymmetry is a kind of frictional force, but we emphasize that the boundary conditions, 
a usual source of asymmetry in studies of this sort, are taken to be time symmetric. For 
the mixing flow the response of the system, as reflected in its entropy as a function of 
time, occurs only subsequent to the "friction," while for the oscillators the effects are 
both  before and after. Some general discussion also takes up the question of which of the 
foregoing systems is a better model of the physical world for purposes of correlating 
arrows of time. 

1. Introduction 

In an  earlier paper  ( S c h u l m a n ,  1 9 7 3 )  one  o f  us e x a m i n e d  a t h o u g h t  experi-  
m e n t  o f  Gold  ( 1962a ,  b )  w h i c h  was supposed  to  cor re la te  t he  t h e r m o d y n a m i c  
a r row o f  t ime  w i t h  the  cosmologica l  a r row.  2 Accord ing  to S c h u l m a n  (1973) ,  
a cor rec t  f r a m e w o r k  for  d e m o n s t r a t i n g  such  a co r re l a t ion  is t he  fol lowing:  
For  some m o d e l  d y n a m i c a l  sys tem suf f ic ien t  ( 'out n o t  excessive) da ta  a b o u t  
t h e  s ta te  o f  t h e  sys tem are  given a t  t w o  d i f f e ren t  t i m e s  (t  = 0 a n d  t = T 1 + T2), 
a n d  the  s ta te  is s tud ied  at  i n t e r ven i ng  t imes .  At  some i n t e r m e d i a t e  t ime  T1 a 
t ime  reversal  n o n i n v a r i a n t  p e r t u r b a t i o n  is appl ied  to  t he  sys tem.  I f  t he  da ta  
a t  0 and  T 1 + T 2 are rough ly  the  " s a m e "  (in wha t  sense will b e c o m e  ev ident ) ,  
t h e n  the  on ly  a s y m m e t r y  (or  a r r o w )  in the  p r o b l e m  is t h e  p e r t u r b a t i o n  at  T v 
To d e m o n s t r a t e  a co r r e l a t i on  of  th is  a r r o w  w i t h  some  o the r  a r row,  one  would  

1 Work supported in part by U.S. Army Research Office (Durham, N.C.). 

2 If one agrees with E. R. Harrison (1974) it would be more accurate to say that Gold uses 
a "dark sky arrow" rather than an arrow determined by the expansion of the universe 
(Gold uses the fact that more photons leave than arrive). In any case, we continue to 
use the terminology "cosmological arrow." 
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then have to show the emergence of  the other arrow in the behavior of  the 
system. In particular, it would be interesting to see whether the response (by the 
system) to the per turbat ion occurs both  before and after the perturbat ion or 
only on one side.3 

In Schulman (1973) a collection of  harmonic oscillators was studied and no 
arrow found. That is, boundary values for the oscillators were given at t = -+To 
and friction allowed to act at t = 0. By considering oscillators with many 
different frequencies a sort of  equilibrium was reached for - T o  + r < t < - ~  
and r < t < T o - r, where r is some characteristic equilibration time. How- 
ever, the system was found to depart  from equilibrium bo th  for 0 < t < r and 
- r  < t < 0. Arguments were also given for this noncausat behavior to occur 
in dynamical systems more general than harmonic oscillators. 

In this paper we study another model, but  are able to report  that  this system 
does show causal behavior. The model  is a certain flow on a torus (details 
below) and was selected because the flow is known to be mixing. It was felt 
that  the mixing proper ty  would facilitate the appearance of  phenomena 
associated with time asymmetry,  and this indeed appears to be the case. A 
perturbat ion of  a t ime asymmetric  type is applied and the system found to 
be out  of  equilibrium only after the perturbat ion.  

Section 4 contains some general arguments which explore the question of  
which model  is a bet ter  description of  natural phenomena,  the oscillators or 
the flow on the torus,  with the object o f  determining whether optimism or 
pessimism is in order for the program o f  correlating arrows. 

2. Dynamical Systems 

Two dynamical  systems will be considered: harmonic oscillators and 
discrete flow on a torus. 

A harmonic oscillator with natural  frequency co has I lamiltonian 

/4= -~(p~ + ~2q~) (2.1~ 

where p and q are Cartesian coordinates in its phase space. In polar coordinates, 

E = ~(p2 + co,q2) 

0 = tan-l(ooq/p)  (2.2) 

3 In Gold's thought experiment the system is a star confined to a box foi millions or 
perhaps billions of years. At some stage a window is opened and photons escape. The 
expansion of the universe and darkness of the night sky are what cause this asymmetric 
behavior, namely, the net escape rather than the absorption of photons. The question 
for this system is whether it departs from equilibrium only after the opening of the 
window, or also before. See Schulman (1973) and Gold (1962a, b). 
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the evolution of  the system is given by 

E = E o = const (2.3) 

0 = c o t - - 8  

where 8 is some constant angle. 
The torus has coordinates x and y which vary between 0 and 1. This should 

be considered the phase space of  the system since, in the dynamics we shall 
give, the coordinates (x, y )  are sufficient data to determine the motion for all 
time. The time evolution occurs in discrete steps, and each step is taken to be 

X' = X +y,  rnod 1 (2.4) 
¢ 

y =x  + 2y, mod 1 

(both radii of  the torus are 1 ). This flow ("automorphism," strictly speaking) 
is mixing. That is, if ta is Lebesgue measure of the torus we consider two 
measurable subsets A and B of the torus. Let the transformation described by 
equation (2.4) be designated ~ mad its nth iterate ~n. Then 

lim /a(A (~ ~nB) = u(A)u(B) (2.5) 

That this is true for all measurable sets A and B is the mixing property. The 
harmonic oscillator dynamics is not mixing since every subset of  phase space 
is simply rotated about with no change in shape. For many properties of the 
flow of  equation (2.4), as well as proofs that it is mixing, see Arnold and Avez 
(1968). 

Entropy for either of  these two systems is defined as follows. The phase 
space is devided into cells or grains A i, i = 1 . . . .  , of  equal measure. The entropy 
S(A) of  a set A is then given by 

S(A ) = - ~ Pi log Pi, Pi = #(A N 2xi)/#(A ) (2.6) 
i 

Increase of  S in the course of time (as A evolves)is indicative of  progress 
towards equilibrium. In this respect the flow on the torus behaves well: For 
reasonable 21 i, etc., equilibrium is rapidly attained. For harmonic oscillators 
it is never attained and somewhat artificial means must be employed to force 
a kind of  equilibration. We consider not a single oscillator, but a collection of  
them with varying frequencies distributed according to P(co). When examining 
the entropy, however, we shall not  look in the many-dimensional phase space, 
but rather the projection of  all these oscillators on a single E-O plane. With this 
device, if we start the collection according to so'me distribution in 0 and E as 
weli as co, the averages o f  0 and 0 2 (denoted by angle brackets) behave as 
follows: 

(O(t)) = (co>t - <8> (2.7) 

(0 2(t)) = (co2)t2 + (6 2> __ 2<CO> (8 >/- 
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where it is assumed that 8 and co vary independently. A reasonable criterion 
for equilibrium is 

< [zxo( t ) ]  2> - ( [ o ( t )  - ( o ( t )> ]  2> = 2rr ( 2 . 8 )  

and by equation (2.7) this will take place for r such that 

7" = (27 r / ( (Aco)2 ) )  1/2 ( 2 . 9 )  

if it is assumed that (8) and ((6)2) are small (otherwise r is smaller). 
The "experiment" carried out on these models is the following: Two regions 

of phase space are defined; we require the initial state of the system to be in 
one of these and the final state in the other. Thus we consider the evolution 
of a region of phase space and only keep that part of the original region which 
ends up in another prescribed region. [This prescription replaces the boundary- 
value problem of Schulman (1973), wt~ch is extremely difficult to work with 
for anything beyond harmonic oscillators.] At some time during the evolu- 
tion of the system it is subject to a time-reversal-violating perturbation. For 
the oscillators this takes the form of an instantaneous, totally effective 
frictional force. I f  the perturbation takes place at time TI, its consequences 
can be summarized by 

q(T~l) = q ( T O  (2.10) 

p ( r i  ~) = o 

where f ( T 1 )  means the limit of  f as t approaches T 1 from above (+) or below 
(-) .  For flow on the toms the perturbation takes the form 

t 

x = x  (2.11) 

y '  = o~y, O < oe < 1 

To discuss the sense in which the operation (2.11) is time-reversal violating 
it is convenient to use matrix notation. Position on the torus is represented 
by a column vector ~ with x in row 1, y in row 2. The transformation (2.4) is 
the matrix M and (2.11), R. These are 

;1 ° °l 
where it is understood that the position vector is always taken modulo 1. 

Since the torus, as a phase space, does not naturally yield itself to a 
description in terms of  position and momentum, it is not immediately clear 
what the time-reversal operation ought to be. A time-reversal operator, T, is 
a map of  phase space into itself. Since T 2 = 1, it preserves area. In order that 
M be T invariant we require (Schulman, 1972) 

T = M T M  (2.13) 
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If all matrix elements are integers, the modulo 1 operation can be taken at the 
end so that  the multiplication in equation (2.13) can be taken to be ordinary 
matrix multiplication. The most general form of  T satisfying equation (2.13) 
and having integer matrix elements is 

where a and b are integers satisfying 

Thus we can take 4 

~(a + b)) 
(2.14) 

5£l 2 -- b 2 = 4 (2.15) 

T(I i) (2.16) 

The operator  R does not  satisfy T = R T R  with the T of  equation (2. i 6 )  s. 
Hence R violates T invariance and in fact shrinks the occupied region of  phase 
space. 

In setting up the boundary-value problem we do not  in general demand that  
the initial and final sets in phase space c o i n d d e - i n d e e d  for the frictional 
force on the oscillators this would eliminate most phase points. Rather our 
symmetry requirement is that both  initially and finally the sets in phase space 
have the same area. This corresponds to the systems' being dispersed by about 
the same amount  both initially and finally so that final and initial entropy is 
about the same (the imprecision here is due to the variability possible in the 
definition of  the grains {Ai)). 

3 .  N u m e r i c a l  R e s u l t s  

The previous section was concerned with a set in phase space and its time 
evolution, hi our numerical work we took  various sets and considered the 
evolution of  randomly selected points uniformly distributed in this set. These 
began at t = 0 and at t = T 1 were subjected to the asymmetric perturbat ions 
described above. Then they propagated, according to their usual law, for an 
additional time T 2, when they were required to fall in another fixed set of  
phase space. That is, alI points from the original set that did not fall in the 
right place at the end were rejected. Randomly selected frequencies for the 
oscillators were also used. In this way we enforced symmetric boundary  

4 T of equation (2.16) corresponds to a = 1, b = 1. Other solutions are a = 2, b = 4 and 
any pair given by the recursion a n + 1 = 3an - an - 1, bn  + 1 = 3bn  - bn  - 1- We have 
no reason to prefer any particular a and b. Equation (2.16) is an example of Pen's 
equation. See H. Hasse (1950). 

s In fact, R will not satisfy T = R T R  for any choice of T satisfying T 2 = 1. 
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Figure 1. Entropy as a function of time. 390 oscillators with random (uniformly 
distributed) frequencies in the range 10 <~ co < 10.5 are located in the region of phase 
space 13 K E < 16, 0 ~< 0 < 1.2 (radians) at time t = 0. At t = 67 they are subjected to 
friction with the consequences described in equation (2.10) of the text.From t = 67 
until t = 118 they again pro pagate freely. At t = 118 they all lie in the region o f phase 
space 0.1 ~< E-K< 16.1,0 -K< 0 ~< 6.2. 

conditions. Generally we took T 1 approximately but not exactly equal to T2 
because exact equality introduced spurious correlations for the oscillators. In 
our experience it made no difference whether T 1 > T 2 or 7'2 > 7"1. The 
resulting collection of  acceptable points was again propagated from t = 0 to 
t = T t + T2 and its ent ropy calculated [equation (2.6)] as a function of  time. 
So long as the number of  acceptable points was several times the number of  
grains, the behavior o f  the entropy was not sensitive to  the grain size. 

In Figure 1 is shown the entropy as a function of  t ime for oscillators 
starting in a small region of  phase space but  allowed to end almost anywhere 
(exact parameters in the figure caption). The evolution is therefore essentially 
that o f  an initial-value problem. The ent ropy behaves as expected.  Within a 
few "seconds" equilibrium is reached and the ent ropy fluctuates about  a value 
determined by the number of  grains and the number of  acceptable points (if 
G is the number of  grains and N i s  the number of  acceptable points and 
N / G  ~ 1, then (S) = log G - G/2N):  Prior to the frictional force (at t = 67) 
there is no indication (in S) of  the impending perturbation.  Subsequently,  
of  course, the entropy increases and the system returns to equilibrium (we 
cannot account for the mysterious fluctuation in returning to equilibrium 
after t = 67). 

When the size of  the terminal region in phase space is reduced an entirely 
different situation emerges. In Figure 2 the oscillators have an initial region of  
phase space similar to that used for Figure 1. But now they must find their 
way into a fairly small region o f  phase space at the end. They never even get 
close to equilibrium (the ent ropy staying below log G - G /2N) .  Moreover, 
immediately before the friction at t = 67, the entropy drops precipitously in 
anticipation. This is a confirmation of  the calculations of  Schulman (1973) 
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Figure 2. Entropy as a function of time. 258 oscillators with the same frequency distribu- 
tion as those in Figure 1, begin in the region 15 ~< E < 15.25, 0 ~< 0 < 1.2 at time t = 0. 
At t = 95 friction acts. At t = 172 they are required to be in the region 5 ~< E < 5.75, 
0 < ~ 0 < 1 .  

in which the oscillators were found no t  to develop an arrow. (In the  next  
sect ion we shall give some general a rguments  account ing  for this an t ic ipa tory  
effect . )  

In Figure 3 is shown the en t ropy  as a func t ion  o f  t ime for the f low on a 
torus ,  start ing at t = 0, wi th  a per turb ing  projec t ion  at t = 59. Final ly  at 
t = 98 the system is required to be in a region o f  the torus o f  the same size 
as that  in which it started.  

This system has an arrow. The en t ropy  drops,  as it should after  the  per- 
turbat ion  and just before  the  end. But,  despite the end point  bounda ry  
condi t ion,  there is no ant ic ipat ion at t = 58, 57, etc. ,  o f  the oncoming  projec- 
t ion.  This system can be said to  behave causally because a l though bounda ry  
values have been  given, the system acts as i f  it had only initial condi t ions.  

Figure 3. Entropy as a function of time. 204 particles flowing on a torus. They begin 
(t = 0) and end (t = 98) in the region 0.35 <~ x < 0.45, 0 ~ y < 0.1. At t = 59 they are 
subjected to the transformation y '  = y / 1 0 ,  x '  = x.  
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4. General Considerations 

We have considered two model systems, one o f  which shows an arrow, 
one o f  which does not. Which is a better model of  the physical world? 

Flow on the torus has the advantage o f  being a mixing system. To us, at least, 
it seems that this is more characteristic of  real systems than the harmoniticity 
of  the systems o f  oscillators. 

However, in another important respect the oscillators are the better model 
- t h e y  have conserved quantity, the energy. We shall now explain the dip in 
entropy immediately preceding the friction (Figure 2) in terms o f  the conserved 
quantity alone. Suppose the oscillators begin inca region (Figure 4a) 

E~. ~< E <  L} +AXE/ (4.1) 

Oi-K 0 <<. 0 i + AO i 

at t = 0. They have some distribution of  angular velocities co. We first follow 
all points in this region, including those ultimately to be eliminated by the 
final conditions. If  T 1 >> r [equation (2.9)] the system is in equilibrium by 
time T1. That is, the points will be uniformly distributed in the annulus 

Ei <~ E < E i + AE i (4.2) 

(see Figure 4b). After the frictional force is applied, they are projected down 
from the annulus and have 0 = 0 or 0 = 7r (Figure 4b). This line o f  points 
begins to circle and spread, filling the entire disk (Figure 4d): 

E < El + AEi (4.3) 

Figure 4a. 

Figure 4. (above and next two pages) Progress of oscillators in phase space. See text for 
explanation. In Figure 4c and 4f, p = 0 for all oscillators and the heavy line indicates 
only which regions in q are occupied. 
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Figure 4b. 

Ei ~.~Ei 

\ 

Figure 4c. 

Figure 4d. 
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Figure 4e. 

Figure 4f. 

I 1 
1 

I I 
I I 
I I 

_ _  I 

I I 

I l 

Figure 4g. 
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But at t = T1 + T2 we enforce the condition 

Ef <~E < E;+ 2~)~ (4.4) 

# <0<0i+a0y 
thereby eliminating many of the points we have been looking at until now. 
In fact, this means that the points we have kept did not fill the entire disk or 
inequality (4.3) for T 1 < t < T1 + T2 but rather, because of conservation of 
energy, must have been somewhere in the annulus 

£y<.E < Ef + AEf (4.5) 

(Figure 4e). In particular, this means that for t = T~l, immediately after the 
projection, the points were not on the segment pictured in Figure 4c, but 
rather were on (at most) the intersection of that segment with the annulus of 
inequality (4.5) (see Figure 4f). But then it follows that immediately before the 
friction (t = TI-) the annulus of inequality (4.2) (Figure 4b) was not uniformly 
filled, but only contained points which projected onto the intersection of the 
segment and the annulus defined by the final energies (see Figure 4g). Thus 
for t = T f  the system is not in equilibrium and if we follow its development 
back from T1 will take some time on the order of  z to equilibrate. 

This argument can easily be generalized to arbitrary Hamiltonian systems, 
including those with better equilibration properties than those of harmonic 
oscillators. 

Suppose the general system is started in some region of phase space, in 
particular with some more or less well determined energy-a perfectly 
possible operation in view of the existence o fa  Hamiltonian. In some time 
(equilibration or relaxation time) r the system will have spread uniformly 
through the energy shell allowed it, say g2Ei- Now apply some irreversible 
force-i t  need not be perfectly effective friction, but only some force that 
pushes the system to various other energies. Call this operation P. Now the 
system spreads again, in time filling all regions consistent with energy 
conservation. However, as for the oscillators, if the final conditions contain 
energy inequalities, as well they might, only a shell ~2Er wilt be filled, which 
means the operator P can only bring points to within this shell. This implies 
that prior to the operation of P not all of 12E i was uniformly filled but only 
points in the inverse image of ~2~_ under P, p-1(~Ef). We can now state what 
is required of P for causality: Th~set ~Ei A P-l(g2Ef)must be uniformly 
distributed in fz N. 

Although we have not found any example of an operator P satisfying this 
condition, we do not know if the condition is a stringent one. It is clearly 
dependent on the grains taken for the entropy calculation (this is the meaning 
given to the term "uniformly" used above). One may speculate that it is only 
satisfied for a particular range El, but that this is the energy range that would 
arise in the initial-value problem. 

We have not drawn any conclusions in this section, but only wished to point 
out pros and cons of  each mode1. 
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5. Summarizing Remarks  

We have shown that a certain mixing flow on a torus displays an arrow of  
time as envisaged in a thought experiment o f  Gotd. The failure o f  harmonic 
oscillators to exhibit such an arrow has been reconfirmed. Finally we pointed 
out that as a model  of  the world, the flow on the torus had the advantage o f  
being mixing while the poor behavior of  the oscillators (as far as getting an 
arrow is concerned) may arise not from their notorious harmonit ici ty,  but  
rather may be characteristic of  all Hamiltonian systems. 

RefOrenees 

Arnold, V. h and Avez, A. (1968). Ergodic Properties o f  Classical Mechanics, Benjamin, 
New York. 

Gold, T. (1962a). Recent Developments in General Relativity Pergamon, London; see 
also (1962b) American Journal o f  Physics, 30,403. 

Harrison, E. R. (1974). Physics Today, Feb, 30. 
Hasse, H. (1950). Vorlesungen iiber Zahlentheorie, Springer-Verlag, Berlin. 
Schulman, L. S. (1972). A n~ls  o f  Physics, 72, 489. 
Schulman, L. S. (1973). PhysicatReview D 7, 2868. 


